Mechanisms of Stress
Presented to: Biological Mechanisms of Health

"According to the latest research, the average human body is 20% water and 80% stress."

Samuele Zilioli, Ph.D.
Assistant Professor
Department of Psychology
Department of Family Medicine and Public Health Sciences
Wayne State University
Outline of Talk

1. Stress: a useful concept?
2. A Stage Model of Stress and Disease
3. The Stress-Response System
4. Measuring Activity of the HPA axis
5. Some empirical examples from our lab
6. Q&A
Traditions in the study of stress (Cohen et al., 2016)

- Stress as an overly permissive term (Kagan et al., 2016)
  - Seyle defined stress as a nonspecific response of the body to deviant condition, that is a condition (pleasant or unpleasant) that demands an adjustment or adaptation by the organism.
  - Rising from a chair, preparing for a wedding, the death of a loved one are all stressors.
  - Is “stress” a useful concept? Is there any agreement to what the characteristics of a stressors are? (Cohen et al., 2019)

- Three solutions
  - Koolhaas et al., 2011 → stressors are unpredictable and/or uncontrollable.
  - McEwen and McEwen, 2016 → distinguish between good, tolerable, and toxic stress.
  - Cohen et al., 2016 → a stage model of stress and disease
A Stage Model of Stress and Disease (Cohen et al., 2016)

- Definition of stress

- Traditions in the study of stress
  - Epidemiologic tradition
  - Psychological tradition
  - Biological tradition
    - Mechanisms of stress

- A Stage Model of Stress and Disease

- Important implications (Cohen et al., 2019)
  - Stressful events can impact most diseases
  - Bidirectional relationship
  - Exposure to stressors does not necessarily make you sick – psychological and social resources can promote resilience
The Stress Response System (Del Giudice et al., 2012)

• SRS comprises the autonomic nervous system and hypothalamic-pituitary-adrenal axis

• Main function:
  • Coordinate the organism’s behavioral and physiological responses to environmental challenges (threats and opportunities)

• How does the SRS work?
  1. The SRS response is hierarchical (i.e. layers of response)
     1. Parasympathetic withdrawal
     2. Sympathetic activation
     3. HPA activation
  2. The components of the SRS interact with each other
Hierarchical Organization of SRS

sympathetic nervous system

circulatory & respiratory system

noradrenaline
ganglia
digestive system
direct innervation

cortisol

endocrine HPA axis

hypothalamus
CRH AVP

pituitary gland
ACTH

adrenal gland

Even et al., 2012
The HPA axis

- HPA functions in response to stress:
  1. mobilize physiological and psychological resources (e.g., energy release, alertness and vigilance, and memory sensitization).
  2. counter-regulate the physiological effects of sympathetic activation (i.e., recovery facilitation).

- Sensitive to social, emotional and psychological events

- HPA axis has a central role in regulating many homeostatic systems in the body (e.g., immune system) → implications for health (short-term and long-term), including mortality

Measuring activity of the HPA axis (part 1)

- Blood Cortisol – bound and unbound cortisol -
- Salivary Cortisol - biologically active, unbound cortisol -
  - Reflects HPA activity in past 10 – 60 mins
- Urine cortisol - bound to carrier proteins
  - Reflects boarder profile of HPA activity
- Hair/Nail cortisol - biologically active, unbound cortisol
  - Reflects boarder profile of HPA activity
- Cerebrospinal fluid CRH
- Blood ACTH
- Glucocorticoid Sensitivity
  - How sensitive the tissue is to cortisol’s regulation
  - Higher number of glucocorticoid receptors in cell → more sensitive to cortisol
  - When more cortisol circulating (chronic stress) → cells downregulate number of receptors (maintain homeostasis) → sensitivity to glucocorticoids diminished → negative feedback inhibited
Measuring activity of the HPA axis (part 2)

- Administration of:
  - CRH (to examine pituitary function) → Measure ACTH and cortisol 1 – 2 hours after administration
  - ACTH (adrenal function) or dexamethasone (pituitary function) → Measure cortisol 8 – 17 hours after administration

- Generally:
  - Normal when challenge molecule suppresses circulation of target hormone
  - Abnormal/dysregulated when there is no influence
Measuring Daily Cortisol vs. Cortisol Reactivity

[Graph showing circadian release of cortisol]

https://www.t-nation.com/living/tip-3-ways-to-beat-chronic-stress & Vors et al., 2019
Some empirical examples from our lab (part 1)
Some empirical examples from our lab (part 2)

Perceived Stress is Linked to Heightened Biomarkers of Inflammation via Diurnal Cortisol in a National Sample of Adults

Erik L. Knight1,2,*, Jaqueline Rodriguez-Stanley3, Yanping Jiang3, David M. Almeida1,4, Christopher G. Engeland1,5, Samuele Ziloli3,6*

1. Center for Healthy Aging, Pennsylvania State University, University Park
2. Department of Psychology and Neuroscience, University of Colorado, Boulder
3. Department of Psychology, Wayne State University
4. Human Development and Family Studies, Pennsylvania State University, University Park
5. Department of Biobehavioral Health, Pennsylvania State University, University Park
6. Department of Family Medicine and Public Health Sciences, Wayne State University

<table>
<thead>
<tr>
<th>Cortisol to Inflammation Path</th>
<th>Estimate of Indirect Path (PSS to cortisol to inflammation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate, $\omega$</td>
</tr>
<tr>
<td>CRP</td>
<td>0.176</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.220</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>0.204</td>
</tr>
<tr>
<td>E-Selectin</td>
<td>0.091</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>0.134</td>
</tr>
</tbody>
</table>
Some empirical examples from our lab (part 3)

**Perceived Social Support and Children’s Physiological Responses to Stress: An Examination of the Stress-Buffering Hypothesis**

Chen, Lihua; Zilioli, Samuele; Jiang, Yanping; Wang, Xiaolei; Lin, Danhua Less

*Psychosomatic Medicine.* Post Acceptance: October 14, 2020

- Environmental Demands (Stressful Life Events)
- Demands Appraised as Stressful (Perceived Stress)
- Negative Emotional Response
- Poor Health Decisions & Behaviors
- Activation of SAM & HPA
- Disease Related Physiological Changes (e.g., immune, cardiovascular)
- Increased Risk of Disease Onset or Disease Progression
Acknowledgments
Thank you