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Phenotypic variation in humans
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From the Human Genome Project to
Genomic Research




The essence of genomics

Genomics grew primarily out of human genetics and molecular biology.
 Comprehensiveness. Genomics aims to generate complete data sets.

* Scale. Large-scale efforts
— large interdisciplinary consortia;
— robust data standards
— computational intensity

* Technology development. High-throughput, low-cost data production.

* Rapid data release. Large data catalogues and analytical tools are
community resources.

* Social and ethical implications.

Green et al, 2011



Whole genome sequencing becomes
affordable enabling Genomic Research

Cost per Human Genome
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Genomics impact on Society

Many parts of our daily lives are influenced by genomic information and technologies

Direct-to-Consumer

Genomic Testing > - Pharmacogenomics »

Social Context >

Wl Human Genomic
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Cystic Fibrosis
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Photic Sneeze

Do you sneaze after going from a dark room out into beight sunlight? Even if you don't, chances

aro you have a friend who does. This unusual "photic sneeze reflex” w at least partly genetic

For most
—————— human traits
we can only
predict risk and
with very
limited
accuracy

Cordell,|you are not likely|to sneeze when
suddenly exposed to bright sunlight.

58% of customers who are genetically similar to you don't sneeze when exposed to birght
sunlight

Your genatic likelihood European ancestry customers
Photic sneeze : Photic sneeze
® raflox roflex e
No photic Mo photic
sneeze reflex sneeze reflex
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4 1 1

Source: 23andme.com


https://23andme.com

Why is it difficult to predict complex
traits from genetic sequences?

1. Each genetic variants associated with a
complex trait has a very small effect on the
phenotype and many are necessary to
modify the phenotype.



Finding the genetic basis of complex
traits: Genome Wide Association
Studies (GWAS)

cases controls
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Finding the genetic basis of complex
traits: Genome Wide Association
Studies (GWAS)

cases controls
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Genome-wide association studies (GWAS) are
discovering thousands of genetic variants
associated with human phenotypic variation

SNPs associated with Cardiovascular
Disease in the GWAS catalog

L L

Compare differences to discover SNPs
associated with trait

......

GWAS catalog, 2020



Why is it difficult to predict complex
traits from genetic sequences?

1. Each genetic variants associated with a
complex trait has a very small effect on the
phenotype and many are necessary to
modify the phenotype.

2. Genetic variants associated with complex

traits tend to occur in regulatory non-coding
regions and their molecular function is often

unknown.



Much of the key phenotypic variation likely
due to changes in gene regulation
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Why is it difficult to predict complex
traits from genetic sequences?

1. Each genetic variants associated with a complex
trait has a very small effect on the phenotype
and many are necessary to modify the
phenotype.

2. Genetic variants associated with complex traits
tend to occur in regulatory non-coding regions
and their molecular function is often unknown.

3. Complex traits are the results of both genetic
and environmental factors.



Genetic, Environmental and GxE factors determine
human phenotypic variation
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Functional Genomics:
beyond the DNA sequence

Ecker et al, 2012



Functional genomics assays
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ENCODE, Roadmap Epigenome and others. Image credit: ENCODE



Understanding genetic, environmental and GxE
regulation of molecular and organismal phenotypes
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Research Program Overview

GxXE in Molecular Phenotypes and complex traits
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Functional and evolutionary characterization of non-coding variants
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Moyerbrailean et al, 2015, Sci Rep
Moyerbrailean et al, 2016, Genome
Research

Richards et al, 2017, PLOS Genet
Findley et al, 2019, Genetics
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Kalita et al, 2018, Genome Res



Many studies identify regulatory variation by
eQTL (expression Quantitative Trait Loci)
mapping

No genetic effect on expression The minor allele is associated with
higher expression
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Cis-eQTLs and Trans-eQTLs
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Genetic regulation of gene expression is variable
across environmental and cellular contexts

Treatment
\
A/B

The A allele is associated with higher

No genetic effect on expression . .
expression following treatment
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See also work by Smith & Kruglyak 2008; Smirnov et al. 2009,
Barreiro et al. 2011, Fairfax et al. 2014, Mangravite et al.
2013, Caliskan et al, 2015, GTEx and others Maranville, Luca et al. 2011
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Transcriptional responses vary between
populations and ancestry groups

175 individuals

Bacterial infection
Listeria & Salmonella

European ancestry
African ancestry
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Markedly stronger response to infection induced in
macrophages from African Americans (AA) compared to
European Americans (EA).

9.3% of macrophage-expressed genes show ancestry-
associated differences in the gene regulatory response to
infection
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Transcriptional response to caffeine, vitamin A, and

Study Design
EA (n=8)  AA (n=10)
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How does ancestry impact gene expression in
treated PBMCs?

Ancestry-related differences in gene
expression

Expression in EA > AA

y= ,81', ot ,Bi; trt * ,Bi, Ethnicity + ,Bi,batch"'ﬁi,individual

Ancestry-related differentially expressed genes
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Dubaisi et al, in prep



How does ancestry impact host transcriptional
response to caffeine, vitamin A, and zinc?

Ancestry-related differentially responsive genes
(Anc-DRGs), FDR<10%

Y= Bi o+ Bis wt _ control ¥ Bi af + BiparentBijindividual

Anc-DRGs
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Are genes differentially responsive between ancestry
groups associated with complex traits?

[C] caffeine Anc-DRGs

B No-DRGs
Control P Platelet count |
Inflammatory Bowel Disease - 1
E L
EA Methylene group ratio per a double bond =
Rheumatoid Arthritis 1
. Body mass inde
Caffeine ( Y thal 000 |
Hayfever, allergic, rhinitis, and eczema
q I
Ls X X 0z
Proportion

The proportion of genes associated with complex traits (TWAS)
is greater for ancestry-related differentially responsive genes
(DRGs) to caffeine compared to No-DRGs (81% compared to
76%, respectively)

_r
EA—L —

TWAS data from Zhang et al, 2020

= |
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Summary 1

« Exposure to caffeine, vitamin A, and zinc can modify the
host transcriptional profile by altering the expression of
genes that are involved in regulating stress response and
immune functions

« Ancestry impacts the host transcriptional response to
caffeine, zinc, and vitamin A

* 81% of the ancestry-related DRGs overlapped with genes
whose expression was found to be correlated immune-
related traits and diseases
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Spring

Harbor l o lV
Laboratory

THE PREPRINT SERVER FOR BIOLOGY

Search

bioRxiv is receiving many new papers on coronavirus SARS-CoV-2. A reminder: these are preliminary reports that have not been
practice/health-related behavior, or be reported in news media as established information.

New Results ¢ Comment on this paper

Psychosocial experiences modulate asthma-associated genes through
gene-environment interactions

Justyna A. Resztak, Allison K. Farrell, Henriette E. Mair-Meijers, Adnan Alazizi, Xiaoquan Wen, Derek E.Wildman,
Samuele Zilioli, Richard B. Slatcher, I Roger Pique-Regi, ‘' Francesca Luca

doi: https://doi.org/10.1101/2020.07.16.206912

This article is a preprint and has not been certified by peer review [what does this mean?].



Psychosocial experiences affect health

MK Social relationships

(e.g. social isolation)

Emotionality
(e.g. anxiety) 05

m—)

Socio-economic Gene
status expression
(poverty)

Snyder-Mackler et al, 2019

Gaye et al, 2017

Cole et al, 2014 cdc.gov/asthma
Chiang et al, 2019 Sandberg, 2000
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Asthma symptoms

What are the contributions of
genetic variation and the
psychosocial environment to
inter-individual variation in
asthma symptoms and severity?
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Asthma in the
Lives of Families Today

Asthma in the Lives Of Families Today

e 250+ asthmatic children aged 10-17 living in Detroit Metro
* Extensive medical and psychological information

Emotionality N\

— Social interactions P VYR WY
. . /?.iv % ‘ 9 .’hf RNA, DNA,
— Socio-economic status > Blood composition PBMC, serum
.. 119 individuals

— Blood composition T I

Asthma /
— Glucocorticoid resistance p y 4
— Gene expression

] Cytokine response to GC
— Genome-wide genotypes
HC
ELISA&Q

@ 7

Resztak et al, under review 36



Do psychosocial experiences alter gene
expression in immune cells?

Does asthma alter gene expression in immune
cells?

Do these transcriptional changes affect the
same genes? Do they share a molecular
mechanism? What are the causal pathways?



A novel approach to de-noise and impute
environmental effects on gene expression

Phenotype/Environment = u + f,E(gene,) + B,E(gene,) + ... + B,E(gene,)

. s
. de-noise  sa N
ﬂ\’ﬁ‘ﬂ imp;rute “ﬁm

N=119 N=251

Resztak et al, under review



A novel approach to de-noise and impute
environmental effects on gene expression

Phenotype/Environment = u + f,E(gene,) + B,E(gene,) + ... + B,E(gene,)

Cross-validated correlation . ii\?.
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Shared signatures of psychosocial
environments and asthma symptoms

category
. Houses unoccupied
Monocytes
FEV1pp
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Shared signatures of psychosocial

environments and asthma symptoms

e Self-disclosure:

— Socio-economic
status

Resztak et al, under review
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Shared signatures of psychosocial

environments and asthma symptoms

e Self-disclosure:

— Socio-economic

status

— neutrophils,
lymphocytes

Resztak et al, under review
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Shared signatures of psychosocial

environments and asthma symptoms

. Houses unoccupied

e Self-disclosure: A = o

FEV1pp
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— |
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Shared signatures of psychosocial

environments and asthma symptoms
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Expression of genes associated with complex
traits is modulated by psychosocial experiences

Transcriptional Association
response > study \

Psychosocial variable Gene Complex trait
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Subjective SES v
RP5-874C20.3
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Resztak et al, under review



Psychosocial variables interact with genetic
variants to regulate gene expression

Gene expression; = genotype dosage; + transcriptional signature + genotype dosage;*transcriptional signature + €

Social Relationships
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Genetic and psychosocial factors in asthma risk

Genetic risk of asthma is modified by
interactions with psychosocial factors
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Summary 2

Social genomics approaches in humans can
uncover potential molecular mechanisms
underlying differences in disease risk

— Psychosocial experiences and asthma symptoms
are reflected in blood gene expression

— Sharing of transcriptional signatures between
psychosocial and asthma traits

— Genetic risk for asthma and other allergic diseases
is modulated by psychosocial factors



Conclusion

Genomics is present in
several aspect of our daily
life

ﬂ i
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The transcriptional
response to treatments
varies between ancestry
groups
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